Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS One ; 17(9): e0267769, 2022.
Article in English | MEDLINE | ID: covidwho-2224419

ABSTRACT

OBJECTIVES: To explore barriers and facilitators to COVID-19, influenza, and pneumococcal vaccine uptake in immunosuppressed adults with immune-mediated inflammatory diseases (IMIDs). METHODS: Recruiting through national patient charities and a local hospital, participants were invited to take part in an in-depth, one-to-one, semi-structured interview with a trained qualitative researcher between November 2021 and January 2022. Data were analysed thematically in NVivo, cross-validated by a second coder and mapped to the SAGE vaccine hesitancy matrix. RESULTS: Twenty participants (75% female, 20% non-white) were recruited. Barriers and facilitators spanned contextual, individual/group and vaccine/vaccination-specific factors. Key facilitators to all vaccines were higher perceived infection risk and belief that vaccination is beneficial. Key barriers to all vaccines were belief that vaccination could trigger IMID flare, and active IMID. Key facilitators specific to COVID-19 vaccines included media focus, high incidence, mass-vaccination programme with visible impact, social responsibility, and healthcare professionals' (HCP) confirmation of the new vaccines' suitability for their IMID. Novel vaccine technology was a concern, not a barrier. Key facilitators of influenza/pneumococcal vaccines were awareness of eligibility, direct invitation, and, clear recommendation from trusted HCP. Key barriers of influenza/pneumococcal vaccines were unaware of eligibility, no direct invitation or recommendation from HCP, low perceived infection risk, and no perceived benefit from vaccination. CONCLUSIONS: Numerous barriers and facilitators to vaccination, varying by vaccine-type, exist for immunosuppressed-IMID patients. Addressing vaccine benefits and safety for IMID-patients in clinical practice, direct invitation, and public-health messaging highlighting immunosuppression as key vaccination-eligibility criteria may optimise uptake, although further research should assess this.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Pneumonia, Pneumococcal , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Male , Pandemics , Pneumococcal Vaccines/therapeutic use , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Qualitative Research , Vaccination
2.
Respirology ; 27(10): 844-853, 2022 10.
Article in English | MEDLINE | ID: covidwho-1891676

ABSTRACT

BACKGROUND AND OBJECTIVE: Single-study evidence of separate and combined effectiveness of influenza and pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) is limited. To fill this gap, we studied the effectiveness of trivalent seasonal influenza vaccine (TIV) and 23-valent pneumococcal polysaccharide vaccine (PPSV23), separately and together, at preventing adverse COPD outcomes. METHODS: Our study used a self-controlled, before-and-after cohort design to assess the effectiveness of TIV and PPSV23 in COPD patients. Patients were recruited from hospitals in Tangshan City, Hebei Province, China. Subjects self-selected into one of the three vaccination schedules: TIV group, PPSV23 group and TIV&PPSV23 group. We used a physician-completed, medical record-verified questionnaire to obtain data on acute exacerbations of COPD (AECOPD), pneumonia and related hospitalization. Vaccine effectiveness was determined by comparing COPD outcomes before and after vaccination, controlling for potential confounding using Cox regression. RESULTS: We recruited 474 COPD patients, of whom 109 received TIV, 69 received PPSV23 and 296 received TIV and PPSV23. Overall effectiveness for preventing AECOPD, pneumonia and related hospitalization were respectively 70%, 59% and 58% in the TIV group; 54%, 53% and 46% in the PPSV23 group; and 72%, 73% and 69% in the TIV&PPSV23 group. The vaccine effectiveness without COVID-19 non-pharmaceutical intervention period were 84%, 77% and 88% in the TIV group; 63%, 74% and 66% in the PPSV23 group; and 82%, 83% and 91% in the TIV&PPSV23 group. CONCLUSION: Influenza vaccination and PPSV23 vaccination, separately and together, can effectively reduce the risk of AECOPD, pneumonia and related hospitalization. Effectiveness for preventing AECOPD was the greatest.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Pneumococcal Infections , Pneumonia, Pneumococcal , Pneumonia , Pulmonary Disease, Chronic Obstructive , Humans , Influenza Vaccines/therapeutic use , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pneumococcal Infections/chemically induced , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/therapeutic use , Pneumonia/chemically induced , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Pulmonary Disease, Chronic Obstructive/complications
3.
Rev Esp Quimioter ; 35 Suppl 1: 104-110, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1836624

ABSTRACT

Adults with lung diseases, comorbidities, smokers, and elderly are at risk of lung infections and their consequences. Community-acquired pneumonia happen in more than 1% of people each year. Possible pathogens of community-acquired pneumonia include viruses, pneumococcus and atypicals. The CDC recommend vaccination throughout life to provide immunity, but vaccination rates in adults are poor. Tetravalent and trivalent influenza vaccine is designed annually during the previous summer for the next season. The available vaccines include inactivated, adjuvant, double dose, and attenuated vaccines. Their efficacy depends on the variant of viruses effectively responsible for the outbreak each year, and other reasons. Regarding the pneumococcal vaccine, there coexist the old polysaccharide 23-valent vaccine with the new conjugate 10-valent and 13-valent conjugate vaccines. Conjugate vaccines demonstrate their usefulness to reduce the incidence of pneumococcal pneumonia due to the serotypes present in the vaccine. Whooping cough is still present, with high morbidity and mortality rates in young infants. Adult's pertussis vaccine is available, it could contribute to the control of whooping cough in the most susceptible, but it is not present yet in the calendar of adults around the world. About 10 vaccines against SARS-CoV-2 have been developed in a short time, requiring emergency use authorization. A high rate of vaccination was observed in most of the countries. Booster doses became frequent after the loss of effectiveness against new variants. The future of this vaccine is yet to be written.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Pneumococcal , Whooping Cough , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Community-Acquired Infections/epidemiology , Community-Acquired Infections/prevention & control , Humans , Infant , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Prognosis , SARS-CoV-2 , Vaccination , Vaccines, Conjugate
4.
BMJ Open ; 12(3): e056706, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1794496

ABSTRACT

OBJECTIVES: To determine the causes of lobar pneumonia in rural Gambia. DESIGN AND SETTING: Population-based pneumonia surveillance at seven peripheral health facilities and two regional hospitals in rural Gambia. 7-valent pneumococcal conjugate vaccine (PCV7) was introduced routinely in August 2009 and replaced by PCV13 from May 2011. METHODS: Prospective pneumonia surveillance was undertaken among all ages with referral of suspected pneumonia cases to the regional hospitals. Blood culture and chest radiographs were performed routinely while lung or pleural aspirates were collected from selected, clinically stable patients with pleural effusion on radiograph and/or large, dense, peripheral consolidation. We used conventional microbiology, and from 8 April 2011 to 17 July 2012, used a multiplex PCR assay on lung and pleural aspirates. We calculated proportions with pathogens, associations between coinfecting pathogens and PCV effectiveness. PARTICIPANTS: 2550 patients were admitted with clinical pneumonia; 741 with lobar pneumonia or pleural effusion. We performed 181 lung or pleural aspirates and multiplex PCR on 156 lung and 4 pleural aspirates. RESULTS: Pathogens were detected in 116/160 specimens, the most common being Streptococcus pneumoniae(n=68), Staphylococcus aureus (n=26) and Haemophilus influenzae type b (n=11). Bacteria (n=97) were more common than viruses (n=49). Common viruses were bocavirus (n=11) and influenza (n=11). Coinfections were frequent (n=55). Moraxella catarrhalis was detected in eight patients and in every case there was coinfection with S. pneumoniae. The odds ratio of vaccine-type pneumococcal pneumonia in patients with two or three compared with zero doses of PCV was 0.17 (95% CI 0.06 to 0.51). CONCLUSIONS: Lobar pneumonia in rural Gambia was caused primarily by bacteria, particularly S. pneumoniae and S. aureus. Coinfection was common and M. catarrhalis always coinfected with S. pneumoniae. PCV was highly efficacious against vaccine-type pneumococcal pneumonia.


Subject(s)
Coinfection , Pleural Effusion , Pneumococcal Infections , Pneumonia, Pneumococcal , Viruses , Coinfection/epidemiology , Gambia/epidemiology , Humans , Infant , Lung , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/therapeutic use , Pneumonia, Pneumococcal/diagnosis , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Prospective Studies , Staphylococcus aureus , Streptococcus pneumoniae/genetics
5.
J Infect Dis ; 224(4): 643-647, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1545949

ABSTRACT

Influenza is associated with primary viral and secondary bacterial pneumonias; however, the dynamics of this relationship in populations with varied levels of pneumococcal vaccination remain unclear. We conducted nested matched case-control studies in 2 prospective cohorts of Nicaraguan children aged 2-14 years: 1 before pneumococcal conjugate vaccine introduction (2008-2010) and 1 following introduction and near universal adoption (2011-2018). The association between influenza and pneumonia was similar in both cohorts. Participants with influenza (across types/subtypes) had higher odds of developing pneumonia in the month following influenza infection. These findings underscore the importance of considering influenza in interventions to reduce global pneumonia burden.


Subject(s)
Influenza, Human , Pneumococcal Infections , Pneumococcal Vaccines/administration & dosage , Case-Control Studies , Child , Child, Preschool , Humans , Infant , Influenza, Human/epidemiology , Nicaragua , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Prospective Studies , Vaccines, Conjugate
6.
Semergen ; 47(6): 411-425, 2021 Sep.
Article in Spanish | MEDLINE | ID: covidwho-1336932

ABSTRACT

Community-acquired pneumonia (CAP) continues to be an important cause of morbidity and mortality in adults. The aim of this study is to update the practical prevention guide for CAP through vaccination in Spain developed in 2016 and updated in 2018, based on available vaccines and evidence through bibliographic review and expert opinion. The arrival of COVID-19 as a new cause of CAP and the recent availability of safe and effective vaccines constitutes the most significant change. Vaccines against pneumococcus, influenza, pertussis and COVID-19 can help to reduce the burden of disease from CAP and its associated complications. The available evidence supports the priority indications established in this guide, and it would be advisable to try to achieve a widespread dissemination and implementation of these recommendations in routine clinical practice.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Pneumococcal , Adult , Community-Acquired Infections/prevention & control , Humans , Pneumococcal Vaccines , Pneumonia, Pneumococcal/prevention & control , SARS-CoV-2 , Vaccination
7.
mBio ; 12(1)2021 01 08.
Article in English | MEDLINE | ID: covidwho-1066816

ABSTRACT

In December 2019 a new coronavirus (CoV) emerged as a human pathogen, SARS-CoV-2. There are few data on human coronavirus infections among individuals living with HIV. In this study we probed the role of pneumococcal coinfections with seasonal CoVs among children living with and without HIV hospitalized for pneumonia. We also described the prevalence and clinical manifestations of these infections. A total of 39,836 children who participated in a randomized, double-blind, placebo-controlled clinical trial on the efficacy of a 9-valent pneumococcal conjugate vaccine (PCV9) were followed for lower respiratory tract infection hospitalizations until 2 years of age. Nasopharyngeal aspirates were collected at the time of hospitalization and were screened by PCR for four seasonal CoVs. The frequency of CoV-associated pneumonia was higher in children living with HIV (19.9%) than in those without HIV (7.6%, P < 0.001). Serial CoV infections were detected in children living with HIV. The case fatality risk among children with CoV-associated pneumonia was higher in those living with HIV (30.4%) than without HIV (2.9%, P = 0.001). C-reactive protein and procalcitonin levels were elevated in 36.8% (≥40 mg/liter) and 64.7% (≥0.5 ng/ml), respectively, of the fatal cases living with HIV. Among children without HIV, there was a 64.0% (95% CI: 22.9% to 83.2%) lower incidence of CoV-associated pneumonia hospitalizations among PCV9 recipients compared to placebo recipients. These data suggest that Streptococcus pneumoniae infections might have a role in the development of pneumonia associated with endemic CoVs, that PCV may prevent pediatric CoV-associated hospitalization, and that children living with HIV with CoV infections develop more severe outcomes.IMPORTANCE SARS-CoV-2 may cause severe hospitalization, but little is known about the role of secondary bacterial infection in these severe cases, beyond the observation of high levels of reported inflammatory markers, associated with bacterial infection, such as procalcitonin. We did a secondary analysis of a double-blind randomized trial of PCV to examine its impact on human CoV infections before the pandemic. We found that both children living with and without HIV randomized to receive PCV had evidence of less hospitalization due to seasonal CoV, suggesting that pneumococcal coinfection may play a role in severe hospitalized CoV infections.


Subject(s)
AIDS-Related Opportunistic Infections/prevention & control , Coronavirus Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Pneumonia, Viral/prevention & control , Streptococcus pneumoniae/immunology , AIDS-Related Opportunistic Infections/epidemiology , AIDS-Related Opportunistic Infections/pathology , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/prevention & control , Coinfection/virology , Coronavirus/classification , Coronavirus/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Follow-Up Studies , Hospitalization/statistics & numerical data , Humans , Incidence , Infant , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Pneumonia, Viral/epidemiology , Prevalence , Randomized Controlled Trials as Topic
8.
Gynecol Oncol ; 161(1): 236-243, 2021 04.
Article in English | MEDLINE | ID: covidwho-1060086

ABSTRACT

OBJECTIVE: International guidelines recommend pneumococcal pneumonia and influenza vaccination for all patients with solid organ malignancies prior to initiating chemotherapy. Baseline vaccination rates (March 2019) for pneumococcal pneumonia and influenza at our tertiary cancer centre were 8% and 40%, respectively. The aim of this study was to increase the number of gynecologic chemotherapy patients receiving pneumococcal and influenza vaccinations to 80% by March 2020. METHODS: We performed an interrupted time series study using structured quality improvement methodology. Three interventions were introduced to address vaccination barriers: an in-house vaccination program, a staff education campaign, and a patient care bundle (pre-printed prescription, information brochure, vaccine record booklet). Process and outcome data were collected by patient survey and pharmacy audit and analyzed on statistical process control charts. RESULTS: We identified 195 eligible patients. Pneumococcal and influenza vaccination rates rose significantly from 5% to a monthly mean of 61% and from 36% to a monthly mean of 67%, respectively. The 80% target was reached for both vaccines during one or more months of study. The in-house vaccination and staff education programs were major contributors to the improvement, whereas the information brochure and record booklet were minor contributors. CONCLUSIONS: Three interventions to promote pneumococcal and influenza vaccination among chemotherapy patients resulted in significantly improved vaccination rates. Lessons learned about promoting vaccine uptake may be generalizable to different populations and vaccine types. In response to the global COVID-19 pandemic, initiatives to expand the program to all chemotherapy patients at our centre are underway.


Subject(s)
Genital Neoplasms, Female/complications , Immunization Programs/organization & administration , Influenza Vaccines , Influenza, Human/prevention & control , Pneumococcal Vaccines , Pneumonia, Pneumococcal/prevention & control , Quality Improvement/organization & administration , Cancer Care Facilities/organization & administration , Female , Genital Neoplasms, Female/drug therapy , Health Care Surveys , Health Services Accessibility/organization & administration , Humans , Influenza, Human/etiology , Ontario , Patient Acceptance of Health Care/statistics & numerical data , Pneumonia, Pneumococcal/etiology , Practice Patterns, Physicians'/standards , Practice Patterns, Physicians'/statistics & numerical data , Professional-Patient Relations , Tertiary Care Centers/organization & administration
10.
Curr Opin Pulm Med ; 26(3): 197-202, 2020 05.
Article in English | MEDLINE | ID: covidwho-726094

ABSTRACT

PURPOSE OF REVIEW: Mass gathering events bring people from across all continents increasing the risk of spread of aerosol transmissible respiratory tract infections. Respiratory tract infections for instance in pilgrims attending the world's largest recurring annual pilgrimage, the Hajj are common. We review recent literature on viral and bacterial infectious diseases with special focus on the Hajj. RECENT FINDINGS: The prevalence of bacterial and viral infections continue to increase, because of the acquisition of rhinovirus, coronaviruses (229E, HKU1, OC43), influenza A H1N1, Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus during Hajj. Whilst MERS-CoV continues to circulate in the Middle East, no cases of MERS-CoV have yet been identified in pilgrims during Hajj. SUMMARY: Respiratory tract infections are a major cause of morbidity in pilgrims attending mass gathering events. The management of severe respiratory infections should consider investigation and empirical coverage for the most likely agents based on syndromic surveillance data from hosting country and /or other relevant exposure history during events. Pneumococcal and Pertussis vaccines should be recommended for Hajj pilgrims.


Subject(s)
Coronavirus Infections/transmission , Influenza, Human/transmission , Islam , Measles/transmission , Pneumonia, Pneumococcal/transmission , Respiratory Tract Infections/transmission , Travel , Tuberculosis/transmission , Bacterial Infections/epidemiology , Bacterial Infections/transmission , Coronavirus , Coronavirus Infections/epidemiology , Haemophilus Infections/epidemiology , Haemophilus Infections/transmission , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Measles/epidemiology , Measles/prevention & control , Middle East/epidemiology , Picornaviridae Infections/epidemiology , Picornaviridae Infections/transmission , Pneumococcal Vaccines/therapeutic use , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Prevalence , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Streptococcus pneumoniae , Tuberculosis/epidemiology , Virus Diseases/epidemiology , Virus Diseases/transmission , Whooping Cough/epidemiology , Whooping Cough/prevention & control , Whooping Cough/transmission
SELECTION OF CITATIONS
SEARCH DETAIL